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One of the most abundant sources of data available to social and political scientists today is text.

The rise of social media and open access to Twitter data partly explain this phenomenon, as does

recent progress in text digitization techniques that have brought books and manuscripts to digital

life that were long hidden away in archives and libraries. Text can help us answer substantive

questions in political science on topics as diverse as political campaigns (Hobbs and Lajevardi,

2019; McGregor, 2020), political polarization and radicalization (Medzihorsky, Littvay and Jenne,

2014), media studies (Matalon et al., 2021), public opinion (González-Bailón and Paltoglou, 2015),

Supreme Court decisions (Strother, 2017), gender and politics (Gleason, 2020), and many others.

As the availability of text grows, so does the need for computer-based text analysis techniques to

supplement those done by humans.

Recent advances in Natural Language Processing (NLP) have spearheaded a text-as-data revo-

lution. In particular, the development of a novel type of deep learning architecture, Transformers, in

2017 has allowed language models such as BERT, RoBERTa, DeBERTa to understand, classify, and

artificially generate text with groundbreaking levels of contextual accuracy (Tunstall, von Werra

and Wolf, 2022; Liu et al., 2019; He et al., 2020). Political scientists have begun using Transformer-

based models, but there is still a need for clarity around the performance differences across BERT,

RoBERTa and DeBERTa models when applied to political science texts. This is especially true

in the case of multilingual classification problems, where multiple models such as mBERT, XLM-

RoBERTa and mDeBERTa exist but there is little consensus over which one performs best or by

how much. Lastly, we illustrate how researchers can fine-tune an off-the-shelf Transformer model to

apply it to specialized text. First, they can further train the model with new unlabelled text data

to suit specific tasks, thus improving contextual understanding of specialized language. Second,

they can adapt the model to any specific application with labelled training data. Combining both

of these strategies, we argue, yields substantial gains in performance.
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In this article, we aim to introduce Transformer models to a broader audience, comparing their

performance in English and multilingual models and showing how researchers can further train them

on specialized text.1 Beyond these contributions, we provide detailed evidence for what we believe

are the practical advantages of these models for political and social scientists: (1) lower costs to

generate data from text through accurate classifiers, (2) potential for large-N analysis for otherwise

small-N projects, and (3) the ability to generate new theoretical questions and empirical tests that

would not be possible without these models. We highlight their importance through three existing

political science projects that use text-as-data for sentence or text classification.2

The culmination is three main findings that provide evidence for determining which model to

use based on the needs of the researcher. First, RoBERTa is the model that generally offers the

greater balance between performance and computational cost. It consistently outperforms BERT

by what we consider is a substantial margin. DeBERTa, on the other hand, has similar performance

to RoBERTa but uses about twice as much computational power. Second, creating custom-made

BERT, RoBERTa or DeBERTa models through further training yields substantial improvements in

classifier accuracy. Third, as expected, all Transformers-based models improve on the performance

of other widely used machine learning approaches.3 With performance gains and the fine-tuning

flexibility of Transformers, we believe a growing number of political science projects using text data

can benefit from a big data approach.

Indeed, early work applying Transformer-based models showcases the potential of BERT and

RoBERTa in political science. Abercrombie et al. (2019) and Abercrombie and Batista-Navarro

(2022) employ BERT to detect policy preferences (up to 34 topics) from members of Parliament

1Further training is the fine-tuning process whereby we provide a model with new words (tokens) and new text on
which to learn how the new words are used in context.

2Our goal is in no way to assess or issue any judgments on any of these projects but rather to highlight the alternatives
that Transformers-based models offer, especially when compared to traditional human coding approaches and other
widely used NLP classification techniques.

3We compare the performance of Transformer models with SVM and Bi-LSTM recurrent neural networks.
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using debate motions. Similarly, Alemán, Micozzi and Vallejo Vera (2022) use XLM-RoBERTa

to classify legislative speeches by topic. Bonikowski, Luo and Stuhler (2022) apply RoBERTa

to identify frames in U.S. presidential campaigns. Since the focus of these papers is not solely

methodological, the selection of their model of choice is unclear (and beyond their scope). Questions

also remain around what additional steps scholars could follow to further improve the performance

of their models. Our paper provides a systematic overview of Transformer-based models and how

to apply them in different classification tasks. While not comprehensively, we show how these

models can be fine-tuned for various tasks, including multilingual classification. In comparing

the performance of the models, we detail the advantages of using different types of models in

examples familiar to social scientists (e.g., performance and computational cost, additional training).

Ultimately, we offer an approachable explanation of Transformer models with the aim of making

them more accessible to a larger number of applied researchers.

The article is structured as follows. We first briefly introduce the Transformers family and show

how it differs from earlier NLP approaches adopted in the social sciences. We then introduce our

main arguments in favor of using Transformers-based models in political and social sciences. Three

existing text-as-data projects are then used to illustrate our arguments and show the full practical

potential of BERT-based models.4 We conclude with our findings, recommendations, and links to

resources for researchers to use these models in their projects.

NLP in the Social Sciences

The field of NLP is in the midst of a major revolution. In the past decade, scholars have gone

from computing word frequencies and generating broad descriptive assessments to building deep

learning systems that understand the contextual meaning of words and sentences (see Grimmer,

4We will focus solely on supervised sentence classification tasks to make the article tractable, even though the models
we introduce have broader applications.
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Roberts and Stewart, 2022; Tunstall, von Werra and Wolf, 2022). Two factors explain the NLP

boom. First, computational power has multiplied recently, providing the necessary technology for

computationally intensive text analysis. The second reason is the increased availability of accurate

NLP models. Companies like Google and Facebook have invested large amounts of resources to

improve text-to-speech and translation technology to detect and weed out (however halfheartedly)

certain types of hate speech and disinformation from their platforms. Translation tasks have become

increasingly important in an interconnected world. To respond to these needs, new Transformers

text models emerged, bringing generational leaps in accuracy and performance.

In political science, machine learning models have become increasingly popular to tackle tasks

such as supervised and unsupervised text classification, named entity recognition, sentiment analy-

sis, text similarity, among others. Topic models in particular have been widely used to cluster texts

into groups without labelled training data (Grimmer, 2010; Roberts, Stewart and Tingley, 2016;

Catalinac, 2016; King, Pan and Roberts, 2013). These models have worked well with newspaper

articles and official statements from political and social elites, but they are less accurate when the

text is informal or short (Grimmer, Roberts and Stewart, 2022). Supervised text classification (the

object of this article) uses a labelled training set to train a model that can accurately classify unseen

text in the same categories as the training set (Barberá et al., 2021; Pan and Chen, 2018). Event

extraction from text has also begun using machine learning approaches despite relying on dictio-

nary approaches for years (Ward et al., 2013; Beieler et al., 2016), and named entity recognition

has registered improvements in recent years with the growth of libraries such as NLTK and spaCy.5

In supervised text classification, common machine learning approaches include Support Vec-

tor Machines (SVM) and Logistic Regression (LR) classifiers. These models use a bag-of-words

approach, with an off-the-shelf tokenizer like NLTK to predict the category of a given text.6 A tok-

5The Natural Language Toolkit, or NLTK, is a suite of libraries used to perform many NLP tasks. Text also must be
pre-processed first, removing stopwords (‘the’, ‘and’, and so on) and special characters for greater accuracy.

6More recent models such as Bi-LSTMs use conditional bag-of-words approaches that better preserve context.

4



enizer breaks down sentences into tokens that the model can understand, which are then converted

into numeric vectors.7 These vectors enable the model to capture how important words are in a

given text sequence. Machine learning models then use these vectorized representations of text to

produce classification predictions based on some outcome of interest. While simple, these models

can yield good accuracy scores in tasks where context is not particularly important for performance.

Improving on word vectorization, one of the first revolutionary advances in NLP was Word2Vec

word embeddings, developed in 2013 by Google (Mikolov et al., 2017). Word embeddings are

mathematical representations of words in a vector space, where vectors closer to each other represent

words that are more similar in meaning. A commonly used English-language Word2Vec model

trained on a large set of Google News text contains 3 million word embeddings, each of which is

a numeric vector of size 1 x 300.8 Other widely used word embeddings are Stanford CoreNLP’s

GloVe and Facebook’s fastText embeddings (Pennington, Socher and Manning, 2014; Bojanowski

et al., 2017).9 Word2Vec and GloVe embeddings are often paired with Recurrent and Convolutional

Neural Network architectures for text classification (RNN and CNN).10 One of the most commonly

used are Long Short-Term Memory (LSTM) networks, a type of RNN that takes in sequential input

but keeps important information from further back in the sentence that can be useful to understand

new words (Chang and Masterson, 2020). Bidirectional LSTM networks, or Bi-LSTMs, process

sequential information both forward and backward, further improving contextual understanding.

We discuss these alternative models in detail in our first application when we describe the baselines

for comparing our main Transformers models.

The problem with these approaches, however, is that word vectors are static, meaning that

7One of the most popular strategies is NLTK’s (https://www.nltk.org), which is often combined with ‘term
frequency–inverse document frequency’, or ‘TF–IDF’ vectorizer, for improved performance.

8As a result, the computational demands of using these large Word2Vec embeddings increased exponentially. However,
nowadays they can be handled easily by most mid- and top-end CPUs.

9See Rodriguez and Spirling (2022) for embeddings created specifically for political science applications.
10Neural networks are deep learning algorithms that recognize patterns in data through different layers and nodes.
Nodes process information via weights and each layer produces a new and more accurate representation of the input
(see Albawi, Mohammed and Al-Zawi, 2017).
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each word has a corresponding fixed mathematical vector after training. In Word2Vec, GloVE and

fastText, the numeric vector for the word ‘bear’ is the same in ‘grizzly bear’, ‘teddy bear’, ‘bear

fruit’ or ‘bear a loss’. This is where the Transformers deep learning architecture innovates: it can

dynamically capture the different meaning of words based on context. In the example above, a

Transformers-based model would produce four different word embeddings for ‘bear’, one for each

specific use of the word. While these approaches are computationally much more expensive, their

benefits greatly outweigh the drawbacks. We now introduce these models and their architecture.

The Intuition Behind Transformers Networks

NLP models based on the Transformers deep learning architecture have yielded unparalleled accu-

racy in sentence classification, question answering, language translation, and other tasks. Trans-

formers are the engines that make BERT, RoBERTa, XLM-RoBERTa, and DeBERTa run.11 What

exactly does the Transformers neural network architecture do to yield these results? They gener-

ate dynamic word embeddings that change for every word depending on the context. That is, no

word embedding for a given word will be the same across different texts. Each embedding incorpo-

rates the word’s position in a sentence and its relationship with words that come before and after.

The embedding for the word ‘bear’ is different in sentences containing ‘grizzly bear’, ‘teddy bear’,

‘bear fruit’ or ‘bear a loss’. The dynamic nature of these embeddings allows for greater contex-

tual understanding as the context largely determines the word embedding itself. This is the key

difference between the Transformers deep learning architecture and other well-known deep learning

architectures such as RNNs or CNNs, which mainly use static embeddings.

To accomplish this, Transformers networks use a mechanism called self-attention. This process

allows the network to take an entire text as input and process its words all at once rather than

sequentially, as RNNs and previous approaches in NLP do (Vaswani et al., 2017; Tunstall, von

11Other models, such as XLM-Net and GPT-3, also use the Transformers architecture.
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Werra and Wolf, 2022). However, processing all words at once is computationally intensive, and

the Transformers architecture is complex. Let us begin by describing its encoder layers. Encoder

layers are the different layers in neural networks, including Transformers, that perform computa-

tions. Each encoder is identical and includes both the self-attention mechanism and a feed-forward

neural network (FFNN). Information passes from one layer to the next becoming progressively sim-

pler and more useful by reducing the amount of information and distilling its essence until it can

produce the most accurate output for a specific application (say a classification or translation task)

. Figure 1 describes how the encoder of a Transformers model works. The input (“I love this city”)

passes through three encoder layers, starting with each token’s initial representation or embeddings

(x1 through x4). These embeddings change as they move from one layer to the next, until the

embeddings reach their final form (f1 to f4). The diagram in Figure 1 shows a three-layer encoder

(encoder1 to enconder3), but BERT and RoBERTa base models have 12 layers.

An element within each encoder layer that helps implement the self-attention mechanism is

the attention head. Each attention head uses multiple matrices to compute the mathematical

relationship between all words in a sentence.12 In the example of Figure 1, the self-attention

mechanism allows the model to associate “this” with “city” (rather than with “I”). Thus, the new

representation of “this” (z3 and eventually r3 in Figure 1) will have some information from the

other words in the batch, thus imbuing the embedding of “this” with contextual information from

all surrounding tokens. encoder1 will produce one output matrix (composed of r1 to r4) that moves

on to the following encoder layer (encoder2) and attention head, beginning the process again and

repeating it as many times as there are attention heads –12 in total for base BERT and RoBERTa

12More technically, each input consists of ‘queries’ and ‘keys’ matrices. In the sentence ‘Mary likes books’, to give
meaning to the word ‘Mary’ (query) we look at the whole sentence, a find the word that is most related to it, in this
case, ‘likes’ (key). This process happens for each word in the sentences. Similarly, the self-attention mechanism will
estimate the distance (dot product) between the vector representation of every query to the already provide vector
representation of every key. Note that, while the tokens can be the same, the representations will be different (as
they they come from previous layers). Mathematically, we obtain the dot product of K(eys) and Q(ueries) such
that Attention(Q,K, V ) = softmax(QKT )/

√
dk)V where d is the dimension of K and used as an scaling factor.

See Appendix F for further details.
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Figure 1: Diagram of a three-stack encoder of a Transformers model. Input text is tokenized and given an
initial embedding (vectorized representation) simplified in our figure as x1 through x4. The initial embeddings
are transformed as they enter the first encoder1. In it, the self-attention mechanism updates the embeddings
(z1 through z4), which are then passed through a feed-forward neural network. They exit the encoder as
a more accurate set of embeddings (r1 through r4). The process is repeated for all encoders in the neural
network. For example, pre-trained BERT-base models use 12 encoder layers.

models (see Ravichandiran (2021) and Tunstall, von Werra and Wolf (2022)). The last encoder

outputs a final representation (f1 to f4) that can then be decoded to generate a specific outcome

such as a translation into another language or a classification into a category (Vaswani et al., 2017;

Tunstall, von Werra and Wolf, 2022; Ravichandiran, 2021). The more layers and attention heads,

the more precise the final representation.

As shown in Figure 1, the vector representation of each token changes as it progresses through

the encoder layers of the Transformers network (Ravichandiran, 2021). For instance, the numeric

representation for ‘bear’ will be different if it is followed by ‘fruit’ or if it is preceded by ‘teddy’.
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Each attention head will output an increasingly accurate word embedding for the word ‘bear’ that

reflects its meaning in the sentence. In ‘the child loved the teddy bear because it was soft’, the

Transformers architecture will use all words in the sentence and give special weight to those it thinks

are related to ‘bear’ –‘child’, ‘teddy’, and ‘soft’– to produce the appropriate embedding for the word

‘bear’, one which captures the idea of a teddy bear rather than a grizzly bear. Since embeddings

are numerical representations of words (vectors that follow algebraic rules), the distance between

two embeddings is an approximation of the relation between words –e.g., vectors that are closer

together are more similar than vectors that are farther apart. For example, in the sentences: ‘The

kid had to bear the loss of misplacing his teddy bear and his doll,’ the cosine similarity between

(teddy) bear and doll should be higher than the cosine similarity between (teddy) bear and bear

(the loss). In Appendix H we provide code and results using RoBERTa to show that this is the case.

In Appendix F, we provide a more in-depth and technical discussion of Transformers networks.

Lastly, note that we emphasize the difference between Transformer models and Bi-LSTMs in

terms of these dynamic word embeddings, but key differences across these models warrant further

discussion. First, Transformers process words all at once, using positional embeddings to under-

stand word order.13 This differs from LSTMs, which have to process tokens sequentially. The

second main difference is the self-attention mechanism we described above, which produces con-

textual word embeddings to fully understand words in context. LSTMs, on the other hand, use

static word embeddings. Bi-LSTMs can maintain the meaning of relevant words further back or

forward (they are bidirectional) in the sequence to improve predictions, but the embeddings do not

change dynamically with context. Due to their capacity to understand context better than tradi-

tional LSTMs or CNNs, we expect Bi-LSTMs combined with the most recent state-of-the-art word

embeddings (GloVe) to provide the best benchmark on which to compare Transformer models.

13Positional embeddings are an additional matrix where each token is given a number to represent its position within
a text.
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The Transformers Family: BERT, RoBERTa, and DeBERTa

Google AI’s BERT and Facebook AI’s RoBERTa and XLM-RoBERTa are the encoders of a Trans-

formers model. After all, BERT stands for ‘Bidirectional Encoder Representations from Trans-

formers’.14 Google’s BERT encoder consists of 12 encoder layers and 12 attention heads in its

BERT-base configuration, and 24 encoder layers and 16 attention heads in its BERT-large config-

uration (Ravichandiran, 2021).15 Also, note the word ‘bidirectional’ in BERT, which points to its

ability to read text forwards and backwards, relating each word to all words in a sentence.

For training, BERT and related models leverage the Transformers architecture, but they also

need (1) information and a way to (2) learn from that information. Step (1) is relatively simple, if

computationally intensive. The creators of BERT used 11,038 books from the Toronto BookCorpus

and all of English Wikipedia to train BERT –a total of 16GB worth of text (Devlin et al., 2018).

Facebook AI’s RoBERTa, on the other hand, used the same data as BERT and added more data

from Common Crawl (CC-News), Open WebText, and a subset of Common Crawl named Stories,16

for a total of 160GB of text, or ten times more data (Liu et al., 2019). Cross-lingual RoBERTa,

XLM-R, was trained using Wikipedia for all languages and data from Common Crawl (Conneau

et al., 2019). While it is true that models have increasingly diversified their sources of training

data, the over-reliance on Wikipedia and web data has implications for specialized applications, as

the language from these websites does not include the types of words and text required for high

performance in specialized tasks. Our third application below addresses this issue and provides a

solution for researchers to improve task-specific performance.

Step (2) is a bit more complex. How do BERT and similar models learn how words relate

14RoBERTa stands for ‘Robustly optimized BERT approach’ and XLM-RoBERTa stands for “Cross-lingual
RoBERTa.”

15Each layer of a BERT-base encoder outputs word vectors of length 768, while the BERT-large model outputs word
vectors of length 1,024 (the same applies to the base and large versions of RoBERTa and XLM-R). Longer vectors
contain a more accurate representation of a word, but also require more space and computational power.

16Common Crawl is a repository of historical websites.
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to each other in text? Their method for learning is called Masked Language Modeling (MLM).17

MLM masks about 15% of tokens in a text corpus. Masking means replacing the actual token with

<MASK>, and then using the full power of the self-attention mechanism from Transformers to

predict the masked words. For instance, in the sentence ‘I love visiting the windy city, <MASK>,

the cultural and commercial capital of the Midwest’, BERT and RoBERTa will use the information

before and after <MASK> to predict ‘Chicago’ While ‘windy city’ may provide a clue, the fact

that the city is an important Midwest metropolis is key in predicting the word correctly. MLM

takes advantage of the two most innovative and powerful features of Transformers-based models:

bidirectionality and self-attention. To predict ‘Chicago’ BERT and RoBERTa use words before and

after the <MASK>, not only words before. They use all relevant information in the sentence (‘city’,

‘windy’, ‘midwest’, ‘metropolis’, and ‘commercial capital’) to come up with a probability for the

most likely candidate word to replace the <MASK>. During training, BERT and similar models

use MLM to predict 15% of all words. Through MLM, these models become highly accurate at word

prediction, which means that they can understand all words in a text and how these words relate to

one another. In sum, while Transformers is the neural network architecture that produces the most

accurate representations through the self-attention mechanism, MLM allows BERT, RoBERTa and

other models to learn about a text.18 Figure 2 provides a graphical description of MLM.

We hightlight four key implications of MLM. First is its ability to understand context well. As

explained above, by masking words in text and making the model predict the masked words, we

have achieved substantial improvements in performance. The second is the inductive and social

biases that emerge from using MLM. Inductive biases help Transformer models using MLM to learn

17BERT also uses next sentence prediction as a training method, but MLM remains the most common training method
across the different models.

18BERT models use MLM to estimate the probability distribution for all tokens to replace the <MASK> object.
Once we uncover the masked object, BERT can estimate loss, the difference between the probability distributions
for each output token and the true labels. In the next iteration, BERT will correct its prediction accordingly. This
process appears in more that one stage of the training process. For example, during fine-tuning (explained below),
we can use MLM to improve our predictions as well.
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Figure 2: Representation of the Masked Language Modeling. Transformer models randomly mask 15%
of tokens. After running the corpus through the Transformers and neural-network architecture, it asks the
model to predict the masked word. Transformer models then calculate loss and the required gradient changes
to optimize the model’s weights and obtain better representations.

sentence structures, which can lead to downstream performance gains (Zhang and Hashimoto, 2021).

However, they are also known to “encode worrying levels of social biases”, especially around gender

and race (Kaneko and Bollegala, 2022). Third is the lack of clarity that remains around the share

of words in the training data that should be masked. The creators of Transformer models masked

15% of words in the unlabelled training data, which has become common practice. Others have

begun to question whether masking more words can yield better results (Wettig et al., 2022). This

naturally leads to the fourth implication, namely, that authors require between 0.5 and 1 gigabyte

of additional, specialized unlabelled data to make noticeable performance gains.19 We address this

issue further in application 3.

Note also that BERT, RoBERTa and XLM-RoBERTa all need to first tokenize a sentence before

they can compute an output. That is, they need to break the text into words and word chunks

that have meaning according to the training process. Since BERT was trained on less data than

RoBERTa, it has 30,522 unique vocabulary elements, while RoBERTa has 50,265. The cross-

lingual model XLM-RoBERTa, on the other hand, has the largest number of unique vocabulary

19It could be that by masking a higher percentage of words, MLM would perform better at predicting newly itroduced
vocabulary elements, as they would be masked more often. Future research should address this issue.
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elements at 250,002 (Conneau et al., 2019). These unique vocabulary elements can handle out-of-

vocabulary words by concatenating different word chunks.20 For instance, the word ‘training’ would

be tokenized as “train, ##ing”, with the double hashtag indicating that ‘ing’ is a subword token

that follows the token ‘train’. This approach to sub-word tokenization has proven to be accurate in

handling out-of-vocabulary words (Ravichandiran, 2021; Tunstall, von Werra and Wolf, 2022).

So far we have discussed BERT, RoBERTa, and XLM-RoBERTa, but not DeBERTa. Decoding-

enhanced BERT with disentangled attention (DeBERTa) model makes two technical innovations

on BERT and RoBERTa (He et al., 2020). One is that it separates the word’s content from its

position in a sentence and thus computes the final embedding from the Transformer in a way that

makes the representation more accurate. The second is that it refines the final decoder layer to

achieve better fine-tuning (He et al., 2020).21 DeBERTa was trained on 78GB of data and reported

improvements between 0.9 and 3.6 percentage points over RoBERTa (large) even when using half of

the training data (He et al., 2020). The downside of DeBERTa is that it uses double the GPU RAM

of RoBERTa (large) and over three times that of BERT (large).22 In the applications section we

compare DeBERTa performance to RoBERTa and BERT to see whether these reported performance

benefits outweigh the computational costs.

Fine-tuning a Transformers-based model

Where Transformers-based models’ abilities shine brightest is in their general applications, a process

20Transformers models use different approaches for subword tokenization. BERT uses byte-pair encoding, which
reduces words to the character level and creates character groups based on unique vocabulary elements according to
their frequency in the training data. RoBERTa uses Byte-level Pair Encoding, which converts characters to bytes
(the letter ‘b’ is byte 62, for instance) and then combines the bytes into groups also according to their frequency
in the training data. Generally speaking, if a group of characters or bytes exists as a token in the vocabulary, it
is used as a token. If not, it is further broken down until a vocabulary token matches it. Because characters are
converted to bytes, this method is more helpful in multilingual contexts. These methods differ from techniques such
as lemmatization or stemming in that the full word and all the information are kept in subword tokenization, and it
is up to the Transformers matrices to calculate how important each subword token is in relation to all other tokens
in the sentence.

21We will not go into depth about the details of DeBERTa’s innovations for want of space and an emphasis on clarity
and applications. Please refer to He et al. (2020) for more information.

22This is, to the authors’ knowledge, the first paper in the discipline to report these findings on computational cost.
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known as fine-tuning. During fine-tuning we use a pretrained Transformers-based model and modify

its final encoder layer to suit our particular task. Thus, we can harness the great knowledge that

BERT and RoBERTa already have about words and text to produce highly accurate sentence

classification of campaign slogans, judicial decisions, racism on Twitter, and myriad other important

political science research applications. The following subsection details the general procedure to

fine-tune and further train Transformer models.

In general, there are two ways to apply these models: standard fine-tuning and further training.

Standard fine-tuning is the most common application and refers to using an already trained or

off-the-shelf model like BERT and applying it to a specific task using manually labelled training

data. Say we are using BERT and trying to classify a text as positive or negative (sentiment). We

first need a labeled training set, usually a sample of text manually labeled ‘positive’ or ‘negative’.

The size necessary for the training set varies, but one of the advantages of BERT, RoBERTa, and

similar models is that they can be fine-tuned using relatively small amounts of training data.23 We

then tokenize all the labeled text using BERT’s tokenizer and divide the training data into training

and test sets.24 We set the appropriate model hyperparameters25 and apply BERT to our specific

classification problem. We use 10-fold cross-validation to fully evaluate the capacity of the model

to generalize to unseen data.26 Once the model has been cross-validated, we train the final version

using the full set of training data without splits and obtain our final classified dataset.27

23No hard rule exists on the amount of labeled text per category required to train a Transformers model, but it is
ideal to have between 200 and 500 observations depending on the task. Transformer-based models perform well
with small training sets (Khan et al., 2021).

24The training set is a subset of the training data that the model will use to “learn” how to classify the task at hand.
The model then uses the test set to evaluate its prediction accuracy on unseen data. Common practice is to split
the data into 80% train and 20% test sets in five-fold cross-validation and 90% and 10% in ten-fold cross-validation.

25Learning rate, number of epochs, batch size, optimizer, and number of warm-up steps.
26In all our applications below, we perform 10-fold CV on the full dataset on a set of 90-10 train/test splits. We do
not hold out an extra 10 or 20% of the data for a true out of sample test for two reasons. First, we report the test
averages for the full CV run as our final test scores, and we do not select a specific ’best model’ from the CV run.
The second, and more constraining, reason is that we do not have large amounts of data for applications 1 and 2,
and withholding data from training affects performance noticeably. We further explain cross-validation and how to
set hyperparameters in Appendix B.

27Note the difference between the cross-validation and final fine-tuning step. The cross-validated performance metrics
give us a measure of the model’s performance to generalize to unseen data. The final fine-tuning step uses the full
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The second way to fine-tune a BERT –or similar– model is through further training the model.

To do so, researchers provide additional unlabelled text data to the model to improve accuracy for

a specialized task. That is, we take all the knowledge BERT has and add (1) new raw text data

and (2) new vocabulary elements to allow it to understand specialized text better. As a practical

guide, the researcher must first gain access to a BERT, RoBERTa or DeBERTa pretrained model

that they want to train further. After that, they must add to the model’s tokenizer a new set of

unique vocabulary elements specific to the domain of study. The choice of vocabulary should be

grounded on the researcher’s expertise on a topic. Third, the researcher must collect, tokenize28

and administer new unlabelled data containing the new vocabulary elements to the base pretrained

model. The fourth step is to retrain the model, which allows it to see the new vocabulary elements

in context and understand them better. Lastly, the model can then be saved and applied using

standard fine-tuning to build a classifier. We provide a more detailed guide with Python code

snippets on how to further train a model in Appendix E.

For example, in application 3 in the next section, we further train a RoBERTa-large model

to better recognize text that contains the words ‘covid’ and ‘coronavirus’, two terms that did not

exist in 2018 when Facebook AI trained the original RoBERTa. We use an unlabelled set of 6,076

academic abstracts and 4.8 million tweets and news headlines, all of which are about Covid-19. The

idea is that performance improves when adding ‘covid’ and ‘coronavirus’ as new unique vocabulary

elements to the model and training it to understand what these two new elements mean in relation

to other words in different texts. Note that further training generates a new variant of the BERT or

RoBERTa model, which can then be used for standard fine-tuning as described above. We further

detail how to further train a RoBERTa model in application 3.

training set without splits for training and test data and the best model hyperparameters from cross-validation.
See Appendix B for a more detailed discussion on cross-validation and Appendix C for a step-by-step guide with
Python code snippets on how to perform standard fine-tuning.

28Using the updated tokenizer with the new vocabulary elements.
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Once researchers have built and saved the final classifier, they usually apply it to a new and

unseen dataset to generate larger amounts of data. It is important, however, to be cognizant of the

potential measurement bias present in Transformers-generated data, as it can lead to estimation

bias. We closely follow recommendations by Egami et al. (2023), who propose a method to reduce

measurement bias in data generated through large language models. In Appendix I, we provide a

detailed explanation and illustration of Egami et al.’s (2023) methodology.

In sum, by fine-tuning a Transformers-based model for our own application, we can improve

contextual understanding and therefore task-specific performance. We can then apply the custom-

built model to unseen data to generate larger amounts of labeled data for analysis, correcting for any

potential measurement biases present in the machine-labeled data. We now illustrate the techniques

described above using three different applications relevant to political scientists.

Applications

We use three projects within or relevant to political science to compare the performance of BERT,

RoBERTa and DeBERTa models in different types of text data. We selected the projects carefully

to provide a wide array of potential applications within political science. The first project uses

English text from Twitter and produces a binary classification of civil and incivil tweets. The

second project uses text in 29 languages and classifies it into four categories. The final project uses

Covid-related text in English and a binary classification of true and fake news. This final application

helps illustrate the advantages of further training BERT and RoBERTa. We also provide results

from two non-Transformer baseline models for reference: (1) Support Vector Machines (SVM),

which uses a simpler machine learning model to classify text, and (2) a Long-Short Term Memory

recurrent neural network, which is the non-Transformer state of the art model in the literature. We

provide further details on these two baseline models below.
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We run all of our models Python.29 We use learning rates within the ranges suggested by the

authors of RoBERTa (Liu et al., 2019), the weighted Adam optimizer, and 10 warm up steps.30

We use 4 epochs for BERT, 5 epochs for RoBERTa and DeBERTa, and 6 epochs for the cross-

lingual models, all with an early stopping mechanism to prevent overfitting.31 The computational

requirements for each model vary widely, and researchers should consider the perfomance-cost trade-

off when deciding on which model and which platform to use.32 We provide further details on the

models in Appendix B, including how long each model takes to run and the maximum number of

tokens used per application (see Table B.1). We also provide the standard deviation for the F1

scores of all the cross-validation runs in the tables below.

Lastly, while this article and the applications that follow focus primarily on the predictive per-

formance of Transformer models, they are also useful for measurement. Indeed, we would emphasize

the importance of using these models to create new and more accurate measures of complex politi-

cal phenomena. For instance, Transformer models can help us generate more precise measures for

Supreme Court Justices’ ideal points, interest group interactions in Latin American parliaments,

29The code uses three common machine learning and deep learning Python libraries: Transformers, Torch
and Scikit-learn. Code for these libraries is widely available and accessible to all applied researchers. We
have also made our code available on GitHub ( https://github.com/joantimoneda/Bert_Roberta_
Deberta_jop). All pretrained models used in this article are publicly available at huggingface.co.
These include BERT-large (bert-large-uncased), RoBERTa-large (roberta-large), DeBERTa-large
(deberta-v3-large), XLM-RoBERTa (xlm-roberta-large), mDeBERTa (mdeberta-v3-base) and
mBERT (bert-base-multilingual-uncased).

30The learning rate is the parameter that determines how quickly the model ‘learns.’ A low learning rate can lead to
slow convergence or the model lingering in local optima. A high learning rate can often lead to lack of convergence
because the model overshoots the solution. Scholars should monitor loss and accuracy gains to ensure they pick
the right learning rate to maximize performance. Recommended learning rates are 3e− 4, 1e− 4, 5e− 5, or 3e− 5
for BERT-large-uncased (our choice: 3e− 5), 1e− 5, 2e− 5, or 3e− 5 for RoBERTa-large (our choice: 3e− 5), and
5e−6, 8e−6, 9e−6, or 1e−5 for DeBERTa-V3-large (our choice: 1e−5). Each researcher can then move the needle
up or down to fit each specific task, testing learning rates in these ranges. For XLM-R, 5e − 6 is recommended
but again, this may vary slightly between 5e− 4 and 5e− 7 in most applications. The batch size is the number of
samples that will be propagated through the network in each iteration. A size of 16 is preferred over one of 8 and
will produce better performance, especially with more than two labels. After that, a batch size of 32 makes the
model run faster but does not meaningfully improve results and is much more computationally demanding (in terms
of GPU RAM). Weighted Adam is an adaptive optimizer that helps improve convergence and generalizability(see
Loshchilov and Hutter, 2017).

31Training ends after the first increase in validation loss when compared to training loss.
32In Appendix A, we include a breakdown of the computational requirements and costs associated with each model
on Table A.1. In this article, we use Jupyter Notebooks that we run either on Google Colab (free GPU accelation
up to 16GB of GPU RAM) or datacrunch.io for more demanding tasks. Table B.1 in Appendix B details which
computing platform we use depending on the model and the number of tokens.
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democratic incumbents’ social media use, and a host of other phenomena where text is a primary

source of data. In fact, the variables that result from these models, and which are then used in

statistical models, are often their most powerful contribution.

1. Incivility on Twitter

The first project studies incivility in US state legislatures (Gervais and Morris, 2019). The authors

leveraged increased Twitter activity by state legislatures (the institutions themselves have Twitter

accounts) and organized parties in state legislatures between 2006 and 2018, collecting all twitter

activity in this period for all 50 US state legislatures and organized state parties. The process yielded

344,000 total tweets and the authors built a sample of 2,076 tweets, and used three research assistants

to code each tweet as either civil or incivil. Examples of incivil tweets are: “.@AKIndDems Wrong.

Please stop lying to the twitterverse. Interested in the truth? Read here- https://t.co/D2p8OZAjBl

#akleg” and “@AKIndDems - that’s not true. Don’t play fast and loose.”33

The coders agreed on the labeling 75% of the time and the average agreement across coder pairs

was 78.7%. The Kappa score for inter-coder reliability is 0.591, indicating moderate agreement.

The authors of the article decided to code as ’incivil’ tweets where at least two coders agree. This

led to a total of 534 incivil tweets (25.7%) and 1,542 civil tweets (74.3%) in our final dataset, a

slightly imbalanced panel for which we will report F1 scores. The F1 score is the harmonic mean

between precision and recall scores, and therefore better captures accuracy in unbalanced panels.34

The mean length for these tweets is 19.29, resulting in an average of 42.32 tokens per tweet using

33The authors set four criteria for incivil tweets: 1) name-calling, mockery, sarcasm, and character assassination; 2)
spin and misrepresentative exaggeration; 3) emotionality/digital stridency; 4) conspiracy theory.

34This is because it considers both how well the model has identified true positives as opposed to generating false
positives (precision), and the model’s ability to identify true positives as opposed to generating false negatives
(recall). Some models may generate a lot of true positives and very few false positives (high precision), but they
may also generate a lot of false negatives (low recall) –or vice versa. This is a larger problem in unbalanced panels.
When only 5% of observations are 1, models can produce more false negatives because the 0 category dominates,
leading to low recall, but they may also have high levels of accuracy because most observations will be classified
correctly. By using the F1 score instead of the accuracy score, we get a much more representative picture of the
model’s performance.
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the RoBERTa tokenizer and a maximum number of tokens of 147. We shuffle the full 2,076 tweet

sample and use ten-fold cross-validation (CV) to test the ability of the model to generalize to unseen

data. We report the average scores from repeated (10 times) 10-fold CV for all models in Tables

1 and 2. Repeated 10-fold CV consists in performing 10-fold CV multiple times (in our case ten

times), yielding an average of model performance across 100 models from 3 different sets of 10 folds.

This approach provides a much more accurate estimate of true out-of-sample model performance.35

In Table 1 we report our first set of tests using the ideal ‘type’ variable where at least two

coders agree.36 We compare the performance of BERT, RoBERTa and DeBERTa and provide two

other non-Transformer baseline models that have been widely used in the literature. First is a

machine learning approach using SVM with an NLTK English language tokenizer and a TF-IDF

vectorizer.37 NLTK is a powerful NLP library in Python that helps us convert text into tokens that

models can understand (Loper and Bird, 2002). The TF-IDF vectorizer is a commonly used tool

that penalizes common words and gives particular importance to rare but more meaningful words,

which helps the model to understand text better. This model shows how well machine learning

models can classify text based on advanced calculations of word frequencies and word importance,

but it should perform worse than the rest of the models, given its relative simplicity. The second

model is a Bidirectional Long Short-Term Memory (Bi-LSTM) recurrent neural network, which we

pair with GloVe word embeddings (see Chang and Masterson, 2020).

The results from Table 1 align with our expectations, confirming that Transformers models

produce the most accurate classifications for civil and incivil tweets. The F1 score for RoBERTa’s

classification of civil tweets is high at 0.893. For incivil tweets, on the other hand, RoBERTa’s

35We use a learning rate of 1e-05 (Deberta) and 3e-05 (Bert and Roberta), a batch size of 32, and train the models
over 4, 5 or 6 epochs. Monitoring validation loss versus training loss is a standard approach to determining whether
the model is overfitting. When the validation loss exceeds the training loss, the model is trying to increase accuracy
on the training data at the expense of generalizability. This is reflected in worse performance on the validation set.

36This variable tends to produce the best performance across all models.
37We apply the TF-IDF vectorizer, which weighs token frequencies once document frequencies are also considered, to
the SVM models to maximize their performance as they do not use word embeddings. The TF-IDF vectorizer we
use is from the scikit-learn Python library.
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Table 1: Model performance by category (main ‘type’ variable; 10x repeated CV scores)

Model Civil Incivil Macro-Average

Prec. Rec. F1 SDF1 Prec. Rec. F1 SDF1 Prec. Rec. F1 SDF1

ML - SVM 0.787 0.832 0.809 0.005 0.420 0.350 0.379 0.012 0.591 0.604 0.594 0.007

Bi-LSTM - GloVe 0.806 0.841 0.820 0.006 0.479 0.409 0.423 0.009 0.620 0.644 0.627 0.007

BERT-large 0.828 0.921 0.872 0.002 0.672 0.448 0.527 0.021 0.684 0.751 0.700 0.010

RoBERTa-large 0.873 0.915 0.893 0.004 0.716 0.610 0.650 0.026 0.763 0.795 0.771 0.014

DeBERTa-v3-large 0.867 0.906 0.885 0.005 0.694 0.598 0.638 0.017 0.752 0.780 0.761 0.011

Random baseline (F1) 0.618

Majority baseline (F1) 0.743

*Random and majority baselines represent macro-average F1 scores.

F1 score stands at 0.650 on average over 10-times repeated 10-fold cross-validation (100 models in

total). The model’s overall F1 accuracy for RoBERTa is 0.771. DeBERTa performs similarly to

RoBERTa across all models, but BERT’s performance is worse. BERT’s F1 score for incivil tweets is

0.527, a drop-off in performance of 0.123 when compared to RoBERTa’s 0.650. This is a statistically

significant difference considering both models’ standard deviations. BERT performs well with civil

tweets (F1 = 0.872) but its overall performance is worse than RoBERTa and DeBERTa.

Compared to the baselines, all Transformer models improve on the performance of simple ma-

chine learning and standard neural network approaches. As expected, the Bi-LSTM model with

GloVe embeddings performs better than SVMs. Simpler machine learning models cannot under-

stand the linguistic nuances in civil and incivil tweets and produce low levels of accuracy for incivil

tweets.38 RoBERTa still improves on Bi-LSTM-GloVe’s performance by 53.2% in the incivil tweets

category and 23% in overall model performance (when comparing F1 scores). Note that overall

levels of accuracy may appear artificially high for these two models, considering that civil tweets

are easiest to classify as they represent 74.3% of the sample. Indeed, the random accuracy for the

(unbalanced) dataset is 74.3% for zeroes (civil) and 25.7% for ones (incivil).39

38The higher accuracy of SVM and Logistic Regression in civil tweets is trivial. The models default to predicting civil
when they cannot distinguish between the two because it is the category with the most tweets in the sample.

39Random accuracy refers to the underlying probability that the model classifies an event correctly using only the
share of a given category in the data. Random accuracy reflects only a lucky guess by the model without the need
for further learning.
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We therefore recommend that researchers fine-tune a RoBERTa model to generate labeled data

from a larger set of texts. Equipped with this larger dataset with both human-labeled and machine-

labeled data, we the recommend applying the Egami et al. (2023) method in downstream statistical

analyses. This helps identify and correct for measurement bias in the machine-labeled data. We

provide a full example of this method in Application 3 and Appendix I.

2. Classifying multi-lingual speeches

The second project we use to illustrate the advantages of Transformers-based models of NLP is the

Global Populism Database (GPD) introduced by Hawkins et al. (2019).40 The GPD project started

in 2006 with the goal of creating a large dataset of global populist discourse by political leaders.

The project currently contains 1,161 speeches by 234 leaders from 73 countries. The speeches are

in 29 different languages41 and their length ranges from 18 to 20,587 words, with a mean length of

2,449.8 words and a median length of 1,938 words. The languages in the sample are diverse. Pre-

trained models in high-resource languages–i.e. languages with a large amount of data available–

such as English, Spanish and German, use around 100GB of data. For low-resource languages, such

as Albanian, Latvian, and Tagalog, the pre-trained data can be closer to 10GB. The lack of training

data for some of these languages poses a general challenge for XLM-RoBERTa models to accurately

classify text in certain languages (see Conneau et al., 2019). For us, the challenge is to fine-tune

two cross-lingual classifiers using a relatively small sample size (1,161 speeches).

GPD’s coders have generated multiple variables from the speech data. We will focus on one of

these, the type of speech, which has four categories: international (the audience is foreign and is

preferably given outside the country); campaign (usually the opening or closing of the campaign);

40The full dataset and the codebook can be found at: https://dataverse.harvard.edu/dataset.xhtml?
persistentId=doi:10.7910/DVN/LFTQEZ.

41Bulgarian, Czech, German, Greek, English, Spanish, Estonian, Finnish, French, Hungarian, Croatian, Italian,
Japanese, Lithuanian, Latvian, Macedonian, Dutch, Norwegian, Polish, Portuguese, Romanian, Russian, Slovak,
Slovenian, Albanian, Swedish, Tagalog, Turkish, and Ukrainian.
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ribboncutting (given to a local audience), and famous (a widely circulated speech that shows the

leader at his or her best).42 Classifying the type of speech helps identify the context in which

populism most frequently occurs. The distribution of the categories is as follows: 304 speeches

are ‘famous’ (26.2%), 304 are ‘international’ (26.2%), 294 are ‘ribboncutting’ (25.3%), and 259 are

‘campaign’ (22.3%). A majority of speeches are over 512 words and tokens (99.6%), so we set a

maximum length of 512 for the model and select the first 512 tokens.

The challenges with this dataset are three. First, speeches are long (some have over 50,000

words), and Transformers-based models are limited to 512 tokens –and with 512 tokens, the com-

putational requirements for graphics acceleration are high. The other problem is sample size.43

Having 843 speeches across 3 or 4 categories leaves only between 200 and 300 speeches per category

to train the model and a lower number for the training set after the train-test split required in 10-

fold cross-validation. Lastly, this multilingual dataset covers tokens for English, Spanish, Japanese,

Chinese, Albanian, among many others. Considering these challenges, the GPD data provide a

strong test for the ability of XLM-R to classify speech types accurately.

For this test, we compare the performance of XLM-R, multilingual BERT (mBERT), and mul-

tilingual DeBERTa (mDeBERTa). As in the first application, we provide baseline results for SVMs

and Bi-LSTM with GloVe embeddings.44 Note, however, that the SVM’s tokenizer (NLTK) and

42See also The Guardian, ‘How we combed leaders’ speeches to gauge pop-
ulist rise”, 9 March 2019. https://www.theguardian.com/world/2019/mar/06/
how-we-combed-leaders-speeches-to-gauge-populist-rise.

43There are important implications related to the 512 token limit for Transformer models. First, longer texts (say
Supreme Court decisions) may have multiple sections and thus key pieces of information may be scattered. If, say,
we set a rule to use the first 512 tokens, we may miss important information for the classifier. This is, in our view,
the most relevant drawback of the 512 limit. The authors have found in our testing (both for this article and other
independent research), that classifier performance does not improve after using around 300 tokens in texts longer
than 512 tokens. This may appear counterintuitive, but in fact the classifiers are so accurate that it is often the case
that around 300 tokens are sufficient to comprehend the meaning of a text, and the increases in performance after
that are marginal. The exception are texts where information may be hidden in sections beyond the 512 limit. For
those applications, we recommend pre-processing the text to improve on the rule for which set of tokens to select
from the text.

44We use a learning rate of 5e-06, a batch size of 16 and 4 epochs for XLM-R; and 3e-05, 32 batch size and 4 epochs
for both mBERT and mDeBERTa. We set the max length to 512 tokens per speech, the maximum we can fit into
a Nvidia A100 GPU (80GB of RAM).
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the Bi-LSTM’s word embeddings (GloVe) are not cross-lingual, so we have first to translate all

speeches into English (we could also translate them into other languages, but English is usually

the most accurate). We did this using Google Translate, a service whose main engine is a refined

and proprietary multilingual BERT model.45 We used these models the same way we did with the

English text in the first application above. We used all speeches in their original languages for the

XLM-R, mBERT, and mDeBERTa models.46

Table 2: Model performance by speech type (10x repeated 10-fold CV scores)

Model Campaign Famous International Ribbon-cutting Macro-Average

Prec. Rec. F1 SDF1 Prec. Rec. F1 SDF1 Prec. Rec. F1 SDF1 Prec. Rec. F1 SDF1 Prec. Rec. F1 SDF1

ML - SVM 0.716 0.668 0.684 0.008 0.559 0.618 0.580 0.009 0.809 0.831 0.817 0.010 0.775 0.708 0.740 0.010 0.708 0.715 0.705 0.006

Bi-LSTM - GloVe 0.730 0.715 0.709 0.007 0.552 0.558 0.540 0.015 0.759 0.708 0.719 0.029 0.697 0.668 0.682 0.017 0.668 0.685 0.663 0.005

mBERT 0.794 0.777 0.783 0.002 0.722 0.668 0.689 0.004 0.844 0.870 0.854 0.011 0.819 0.853 0.832 0.002 0.792 0.795 0.789 0.002

XLM-RoBERTa 0.838 0.845 0.839 0.004 0.792 0.724 0.750 0.011 0.863 0.933 0.895 0.007 0.865 0.854 0.856 0.014 0.839 0.840 0.835 0.009

mDeBERTa 0.784 0.777 0.775 0.011 0.697 0.652 0.670 0.012 0.831 0.882 0.852 0.005 0.833 0.831 0.828 0.004 0.786 0.786 0.781 0.001

Random baseline 0.25

Majority baseline 0.262

*Random and majority baselines represent macro-average F1 scores.

Table 2 shows the results. The F1 scores show that all Transformer models substantially improve

upon the performance of SVM and Bi-LSTM, which is to be expected. Within the Transformers

family, XLM-R performance is particularly impressive. Its F1 score for all types of speeches is

much higher than mBERT and mDeBERTa, which score similarly. The largest difference is with

‘famous’ speeches, which XLM-R classifies 8 percentage points more accurately than mDeBERTa

(6.1 when compared with mBERT). This represents a 11.94% increase in performance. XLM-R

outperforms the SVM model by 29.3% and the Bi-LSTM by 38.9% in classifying ‘famous’ speeches.

Furthemore, XLM-R outperforms mDeBERTa by around 4.5 percentage points on average in the

other three categories. With XLM-R, two of the four speech type categories have F1 scores over

0.839 (campaign and ribbon-cutting speeches) and close to 0.90 (international speeches). High

45We used Google’s API and kept the translations to a maximum of 3000 words per speech to keep the comparison
with other models fair and costs down.

46We do not expect the translation to be a source of bias, considering the improvements in accuracy of machine
translation in recent years especially with English as the target language. It is an inherent weakness of non-
Transformer models that they cannot handle text in more than one language at a time.
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precision and recall scores show that neither false positives nor false negatives are of concern.

Across all speech categories, mBERT and mDeBERTa perform better than the non-Transformer

models but noticeably worse than XLM-R. This difference is likely because XLM-R is a larger model

than mBERT and mDeBERTa, with more training data, tokens, and parameters, making it more

accurate for cross-lingual applications with longer texts overall.47

These results are particularly encouraging considering the aforementioned data limitations. Even

though the classes are well-balanced (around 300 observations in each speech type),48 there are only

1,161 speeches to train and test the model. Moreover, the speeches are in 29 languages, some of

which are trained on much less text data than others. Compounding this, we can only take the first

512 tokens from each speech for classification due to model and GPU constraints. However, the

model performs very well, showing the true potential of XLM-RoBERTa and other Transformers-

based cross-lingual models in text classification tasks, especially with small training sets.

Given the results above, we recommend that researchers fine-tune an XLM-RoBERTa model

over mBERT or mDeBERTa to generate labels in a larger dataset based on the human coded data

from the GPD. Again, once the machine-labeled data is available, applied researchers should follow

Egami et al. (2023) to detect and correct for any measurement bias in the data before conducting

their final analyses (see Application 3 and Appendix I).

3. Detecting Covid-19 Fake News

The third application focuses on detecting fake news around the Covid-19 pandemic and shows the

flexibility of Transformers models and how to apply them to specific tasks through further training.

This application shows the opportunity that Transformers models hold for increasing performance

in specialized domains. While we focus on a specific case here (COVID-19), there are many domains

47Please see Appendix A. For XLM-R, both xlm− roberta− large and xlm− roberta− base, a smaller model, exist.
However, for mBERT and mDeBERTa, only base versions exist. We take the best possible model available from
each for this application to show the true power of available cross-lingual models.

48The exact numbers are: famous, 304; international, 304; ribbon-cutting, 294; campaign, 259.
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in which researchers can greatly improve classifier performance –and therefore generate better data–

by following the steps we outline in this section.49 We use a manually labeled dataset of true and fake

news around the Covid-19 pandemic (see Cheng et al., 2021), an increasingly salient topic of study

within political science (Calvo and Ventura, 2021; Greer et al., 2021; Timoneda and Vallejo Vera,

2021). The authors of the project gathered 7,179 news headlines and Twitter posts containing the

words ‘coronavirus’ or ‘covid’ between December 2019 and September 2020. Through fact-checking

websites, they labeled each story as fake, true, or undetermined.50 Lazer et al. (2018) define ‘fake

news’ as ‘fabricated information that mimics news media content in form but not in organizational

process or intent’. Examples of fake news from the aforementioned dataset are: ‘Coronavirus was

created in a government lab as a bioweapon and then released on the people of China’ or ‘Japanese

doctors advice that taking a few sips of water every 15 mins will prevent the new coronavirus from

entering your windpipe and lungs’. We use the final dataset which has 3,681 fake (51.27%), 1,878

true (26.16%), and 1,620 (22.57%) undetermined news stories and tweets. The mean length for the

headlines is 21.56 words, and the longest is 143 words, resulting in an average of 29.75 tokens per

sentence using the RoBERTa tokenizer and a maximum number of tokens of 160.

Data on the coronavirus pandemic provides a clear example of the advantages of further training

transformer models. When RoBERTa was originally trained in 2018-19, Covid-19 did not yet exist.

Coronaviruses had circulated for years, but none had resulted in a global pandemic. The word

‘covid’ did not exist until February of 2020, so this case provides an intuitive application for how

to further train a model on highly specialized words that we can be certain the original model was

never trained to understand. Original RoBERTa, therefore, cannot know what Covid-19 is or how

the words ‘coronavirus’ or ‘covid’ are used in context today without further training. Our solution

49For instance, researchers have used RoBERTa models to increase performance in the classification of US Supreme
Court decisions (Johnson, Strother and Timoneda, 2024) and of racist text in Spanish (Gordillo, Timoneda and
Vallejo Vera, 2024).

50The dataset is available at: https://github.com/MickeysClubhouse/COVID-19-rumor-dataset.
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is to further train a new RoBERTa model with new data containing the words ‘coronavirus’ and

‘covid’ and add those two vocabulary elements to the tokenizer. The new model should be able to

classify texts containing these two new words more accurately than original RoBERTa.

There are four steps to further train RoBERTa and other Transformers models. First, we add

two new vocabulary elements –‘covid’ and ‘coronavirus’– to the RoBERTa-large (fast) tokenizer,

neither of which exists in the original. The tokenizer now has 50,267 unique vocabulary elements,

two more than the original’s 50,265. Second, we take the pre-existing vector representations for

‘virus’ and ‘respiratory’ from the existing set of RoBERTa vocabulary elements and assign the

mean of those two word vectors to be the vector representation for the newly created elements

‘covid’ and ‘coronavirus’.51 Third, to make these initial representations more accurate, we feed a

set of unlabelled texts containing the words ‘covid’ and ‘coronavirus’ in English to the model and

train it again. In our case, we used 6,079 abstracts from academic articles on the topic of Covid-19

and the coronavirus pandemic. We also added 1GB of short news headlines around the Covid-19

pandemic obtained from Twitter. The format and nature of these texts closely matches the type

of training text data that we use to build the classifier (tweets). Note that none of the unlabelled

tweets used for further training are present in the labelled training data. The amount of text needed

to improve task-specific performance varies, but usually the more text, the more accurate the model

becomes. Fourth, we save the new model and apply it to our classification task –building a classifier

using labelled training data– in the same way we would apply original RoBERTa.52

We repeat this process for each of the transformers models we compare in this article: BERT,

RoBERTa, and DeBERTa, using each model’s own tokenizer.53 We compare the performance of

51This choice is arbitrary though based on theory. Given the numerical representations of word embedding, we
assume that virus + respiratory ≈ coronavirus. This is only a starting point for the new vocabulary elements.
Once we further train the model, the embeddings for coronavirus and covid will adjust and become more accurate
representations of their meaning.

52See Appendix E for a more detailed step-by-step guide on how to further train a Transformer model with Python
code snippets.

53From the Transformers library, we use BertTokenizer for bert− large−uncased; RobertaTokenizerFast for roberta−
large; and DebertaV2TokenizerFast for deberta− v3− large.
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the resulting three new models (BERT-Covid, RoBERTa-Covid, and DeBERTa-Covid) with that

of the original models. We use 10-times repeated 10-fold CV.54

Table 3: Model performance on Fake News Dataset, 10x repeated 10-fold CV

Model Fake True Undetermined Macro-Average

Prec. Rec. F1 SDF1 Prec. Rec. F1 SDF1 Prec. Rec. F1 SDF1 Prec. Rec. F1 SDF1

ML - SVM 0.717 0.749 0.731 0.010 0.701 0.731 0.713 0.006 0.743 0.680 0.708 0.007 0.720 0.720 0.717 0.004

Bi-LSTM - GloVe 0.719 0.732 0.717 0.014 0.720 0.702 0.703 0.013 0.712 0.692 0.694 0.013 0.709 0.717 0.705 0.11

BERT 0.805 0.766 0.782 0.004 0.745 0.806 0.772 0.009 0.748 0.714 0.724 0.003 0.762 0.767 0.760 0.003

BERT-Covid 0.857 0.784 0.815 0.003 0.772 0.809 0.786 0.002 0.744 0.762 0.749 0.005 0.785 0.791 0.783 0.003

RoBERTa 0.872 0.778 0.819 0.010 0.753 0.827 0.783 0.009 0.748 0.745 0.742 0.011 0.783 0.791 0.781 0.008

RoBERTa-Covid 0.875 0.835 0.851 0.008 0.788 0.840 0.810 0.004 0.784 0.758 0.767 0.005 0.811 0.816 0.809 0.003

DeBERTa 0.865 0.820 0.838 0.007 0.754 0.832 0.788 0.008 0.798 0.738 0.761 0.006 0.797 0.806 0.796 0.004

DeBERTa-Covid 0.881 0.834 0.855 0.007 0.772 0.850 0.808 0.003 0.786 0.742 0.760 0.002 0.809 0.813 0.808 0.001

Random baseline 0.44

Majority baseline 0.57

*Random and majority baselines represent macro-average F1 scores.

The results are in Table 3. We compare the performance of BERT, RoBERTa, and DeBERTa

with (1) their respective covid-specific further-trained models, and (2) the same two baseline models

from tables 1 and 2 –SVMs and Bi-LSTM. The results confirm our expectations. First, all of the

Transformers models outperform the baseline models significantly. BERT, the lowest performing

Transformer model of the three, still outperforms SVM and Bi-LSTM-GloVe by 7% and 9.1%,

respectively, in terms of their F1 scores when classifying fake news. Similar gains apply to true

and undetermined news. RoBERTa and DeBERTa show even more significant gains in performance

when compared to the two baselines.

The most relevant results are in comparing original BERT, RoBERTa and DeBERTa with their

respective covid-trained models. All the covid-trained models show substantively significant gains in

performance when comparing F1 scores, especially when classifying fake news. First, BERT-Covid

improves upon BERT by 4.22% in fake news, 1.81% in true news, and 3.45% in undetermined.

RoBERTa-Covid bests RoBERTa by 3.91% in fake news, 3.45% in true news, and 3.37% in unde-

termined. Lastly, DeBERTa-covid outperforms DeBERTa by 2.03% in fake news, by 2.56% in true

54We use the same hyperparameters to train the original and new models to ensure the results are comparable.
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news, and there is no improvement in undetermined news. Therefore, all further-trained models

increase performance in classifying fake news around the COVID-19 pandemic by a range between

2.03% and 4.22%. RoBERTa sees the largest improvement in classifying true stories with 3.45%.

These results are especially significant in substantive terms for two reasons. First is that we

trained the Transformer models with only 6,079 abstracts of academic articles on the topic of

COVID-19, or 8.4 megabytes of text. We then added 4.8 million short news headlines in English

that total 978 megabytes of text. Original RoBERTa, on the other hand, was trained on 160

gigabytes of text. Our unlabelled data represent a fraction of the total training data in terms of

quantity and yet there are noticeable increases in overall performance. It is reasonable to expect

larger performance gains with more training data, or if we retrained the model from scratch. Second,

our results are averages of 100 different models across ten different sets of 10-fold cross-validation.

We can be certain that if we were to draw more model samples the differences between the original

and the Covid models would remain.

In all, these results show the potential that further training models holds for increasing perfor-

mance in specialized applications. Differences across models are significant, especially considering

that original BERT, RoBERTa and DeBERTa already perform well in this application. Note, how-

ever, that performance will vary across domains, and researchers should decide whether further

training the model is warranted for their specific application. We argue that doing so is impor-

tant in domains where text requires complex contextual understanding or uses highly specialized

language. Gordillo, Timoneda and Vallejo Vera (2024), for instance, find that further training

an XLM-RoBERTa model improved classifier performance by 8%. In other situations, where re-

searchers deem the performance of the original Transformer models to be sufficient, continuing

without additional training can be an optimal choice.

In light of these results, our recommendation in this application is to fine-tune a RoBERTa
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model, further training it with unlabeled Covid-related data. To illustrate how to incorporate

machine-labeled data in downstream statistical analyses, we provide an example by analyzing the

effect of the length of a tweet in words on whether the content is fake news. We draw a random set of

3,000 news tweets around the coronavirus pandemic from the CoAID dataset by Cui and Lee (2020),

who code each tweet as fake or true. These tweets are neither in the unlabeled dataset for further

training nor in the final labeled dataset for standard fine-tuning. 1,500 tweets are used as human-

coded, gold-standard data. Another set of 1,500 are used as unlabelled data, and we apply our

Roberta-Covid model to predict the labels. The final dependent variable is whether a tweet is

fake news or not. The independent variable is tweet length. Further details of these tests as well as

the complete set of results are in Appendix I. The code is available from GitHub (omitted).55 We

find that there can be substantial discrepancies in model coefficients when using gold-standard or

machine-coded labels, which is indicative of measurement bias. Applying Egami et al.’s (2023) test

significantly alleviates measurement bias, and we recommend that scholars incorporate it into their

workflow in downstream analyses using labels produced with fine-tuned Transformers models.

Limitations

Despite the substantial gains in performance and the flexibility of Transformers models, they have

limitations. First, performance gains depend on setting the right hyperparameters for each appli-

cation. This requires the researcher to perform various cross-validation test runs to determine the

learning rate that maximizes performance, minimizing both underfitting and overfitting.56 Second,

these models will most often be used to create categorical variables for downstream analyses. Since

55The original Egami et al. (2023) code is available at: osf.io/gjt87/?view only = 8f755cdf147f452a9429797
3eb83d85d.

56Usually, a model overfits when the training loss is much smaller than the test loss. This means the model learns
patterns in the training data too closely, thus minimizing training loss, but those patterns may not exist in the
test data and, therefore, the model does not generalize well. Conversely, a model underfits when the training loss
is larger than the test loss, meaning that there is still more that the model can learn from the training data to
generalize better to unseen data. Cross-validation helps find the right training balance that avoids both underfitting
and overfitting.
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there is uncertainty and error around the Transformer model’s classified labels, this error will then

bleed into the analyses. We recommend following Egami et al.’s (2023) method to detect and cor-

rect for measurement bias in downstream statistical analysis. That said, any coding procedure will

suffer from some form of coding error. Hence, researchers should focus on training models that

produce the highest levels of accuracy for the categories that will then be used in their analyses. It

is especially important to report variation across cross-validation runs to understand the extent of

the uncertainty around model results.

Third, the labelled training data in the final standard fine-tuning step that produces the clas-

sifier needs to be balanced for best performance. This may run counter to the balance of the

categories in the real world, where some categories may be rare events but require a larger share

of the training data for the model to operate correctly.57 Fourth, NLP models are known to suffer

from multimodality, which occurs when the “function we are trying to optimize is not globally

concave” (Roberts, Stewart and Tingley, 2016, p.2). Transformer-based models might suffer from

multimodality too, and hence the importance of repeated cross-validation as a strategy to validate

model results. Our results show that performance is quite consistent across different cross-validation

runs. Researchers must set hyperparameters carefully, using cross-validation to determine the best

set for their particular application (see Appendix B).58

Lastly, The performance gains from Transformers models come at a computational cost. The

sheer amount of parallel calculations involved in the self-attention mechanism requires one or mul-

tiple graphics processing units, or GPUs, which have thousands of small cores and can perform all

these calculations orders of magnitude faster than CPUs.59 For smaller RoBERTa models, scholars

57Note that the training data need not be perfectly balanced. Rather, researchers need to keep the ratio between 2:1
and 3:1. With larger ration, the model will tend to overpredict the more frequent category to the detriment of the
more infrequent one.

58In Appendix B we document the hyperparameters used to train our cases as reference for readers.
59We understand that there is unequal access to computational resources in academia. While the costs of using
Transformers-based models are not prohibitive (see Appendix A), they still pose a major obstacle to their use for
research. Future work should aim to democratize these resources’ use by lowering their cost.
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can use Google Colab to run our sample code. Alternatively, they can access other cloud-based

solutions with top-end GPUs, whose cost is now small and accessible accessible.60

Conclusion

This article introduces Transformers-based classification models for English and multilingual text.

We compare the performance of BERT, RoBERTa and DeBERTa with other current state-of-the-art

models used in political science and find multiple advantages. First, their capacity to understand

context is greater than non-Transformer-based models. Understanding context increases model

performance when generalizing to unseen data. We find that RoBERTa and DeBERTa generally

perform much better than BERT. Second, the multilingual variants of different Transformers models,

in particular XLM-R, perform exceptionally well when the training data is in multiple languages.

Multilingual availability is important in comparative politics and international relations, especially

with low-resource languages.61 Third, Transformers models are flexible and can be further trained

to fit a specific task, allowing researchers to ‘customize’ a model to increase performance.

As stated above, the aim of this article is to compare the performance of recently developed

Transformer models and highlight the versatility of these methods in social science research.62

Furthermore, there are other practical benefits of using Transformers models. Given the model’s

overall improvements in out-of-sample accuracy, scholars can use them more consistently to turn

their projects into big data projects, using manually labeled data as training data instead of as the

60See Appendix D for details on available cloud-based solutions.
61Transformers models allow political science researchers to overcome structural limitations of NLP when analyzing
corpora of low-resource languages–i.e., languages lacking large monolingual or parallel corpora or manually crafted
linguistic resources sufficient for building statistical NLP applications (Magueresse, Carles and Heetderks, 2020).
The multi-lingual capabilities of models like mBERT and XLM-RoBERTa reduce the cost researchers have to incur
in, for example, building new dictionaries or training Word2Vec-type embeddings.

62In Appendix G, we also showcase the application of our models in an established case by replicating Abercrombie and
Batista-Navarro (2022) classification task of policy preferences in parliamentary speeches. By applying RoBERTa
to their training set, we are able to increase performance considerably. The authors classify 34 topics to estimate
policy preferences in speeches from the English Parliament. They apply a BERT-based model and obtain an F1
score of 50.9. We replicate their findings and apply a RoBERTa model, obtaining a 9.3 percentage point increase
in the benchmark test. See Appendix G for the performance table and an explanation of the replication process.
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full sample. This benefit is especially relevant with text data, which is often so abundant that the

real limitations researchers face are related to resources and scaling costs. Transformers models –as

other machine learning models– also allow researchers to understand their data much better.

We think the advantages of Transformers models greatly outweigh their limitations. This is

especially true considering that the models introduced in this article represent a paradigm shift

in NLP applications. They open up new avenues and opportunities for political science research

across all subfields. Indeed, considering that text data is and will continue to be one of the biggest

sources of data in the discipline, harnessing the power of these new models –and the ones that will

inevitably follow– can have a transformational effect in applied political science research.
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