15 Lecture 6: The Multiple Regression Model I

Slides

  • 7 The Multiple Regression Model (link)

15.1 Introduction

We continue studying the simple regression model.

Figure 15.1: Slides for 7 The Multiple Regression Model.

15.2 Vignette 6.1

Once again, let’s simulate some data. Maybe we are interested in urban and rural towns (70% are urban) :

df <- tibble(urban = sample(c(0,1),500,replace=T,prob=c(.3,.7))) %>%
  ## Urban towns spend, on average, $3 million more on wages than rural towns
  mutate(expen_wages = 3*urban+runif(500,min=0,max=4)) %>%
  ## Urban towns are also have greater incomes (e.g., from taxes), but these are reduced by their high wage expenditures:
  mutate(log_income = 1 + 2*urban - .3*expen_wages + rnorm(500,mean=2)) ## <- Population Eq.

Now we can estimate the effect of wage expenditure on income:

model_a <- lm(log_income ~ expen_wages, data = df) 
summary(model_a) 
## 
## Call:
## lm(formula = log_income ~ expen_wages, data = df)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.5228 -0.7246  0.0009  0.7553  2.9893 
## 
## Coefficients:
##             Estimate Std. Error t value
## (Intercept)  2.66707    0.12125  21.996
## expen_wages  0.11798    0.02746   4.296
##             Pr(>|t|)    
## (Intercept)  < 2e-16 ***
## expen_wages 2.09e-05 ***
## ---
## Signif. codes:  
## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.128 on 498 degrees of freedom
## Multiple R-squared:  0.03574,    Adjusted R-squared:  0.0338 
## F-statistic: 18.46 on 1 and 498 DF,  p-value: 2.09e-05

Wait what? (Interpret a log ~ level)

15.3 Vignette 6.2

Let’s see… How can we remove everything from wages that is explained by urban? How can we remove everything from income that is explained by urban?

df %>% group_by(urban) %>%
  summarise(income_urb= mean(log_income)) 
## summarise: now 2 rows and 2 columns, ungrouped
## # A tibble: 2 × 2
##   urban income_urb
##   <dbl>      <dbl>
## 1     0       2.43
## 2     1       3.49
df %>% group_by(urban) %>% 
  summarise(expen_wages_urb = mean(expen_wages))
## summarise: now 2 rows and 2 columns, ungrouped
## # A tibble: 2 × 2
##   urban expen_wages_urb
##   <dbl>           <dbl>
## 1     0            1.94
## 2     1            5.05

The difference between what is explained by urban of income/expendinture (mean) and the observed value of income/expenditure is…

df <- df %>% group_by(urban) %>%
  mutate(log_income_residual = log_income - mean(log_income),
         expen_wages_residual = expen_wages - mean(expen_wages)) %>%
  ungroup()
## ungroup: no grouping variables remain

The residual… what is not explained by urban!!

model_b <- lm(log_income_residual ~ expen_wages_residual, data = df) 
summary(model_b) ### CLOSER!
## 
## Call:
## lm(formula = log_income_residual ~ expen_wages_residual, data = df)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.4569 -0.6348  0.0133  0.6873  2.9770 
## 
## Coefficients:
##                        Estimate Std. Error
## (Intercept)           9.056e-17  4.412e-02
## expen_wages_residual -2.752e-01  3.981e-02
##                      t value Pr(>|t|)    
## (Intercept)            0.000        1    
## expen_wages_residual  -6.912 1.46e-11 ***
## ---
## Signif. codes:  
## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.9865 on 498 degrees of freedom
## Multiple R-squared:  0.08755,    Adjusted R-squared:  0.08572 
## F-statistic: 47.78 on 1 and 498 DF,  p-value: 1.464e-11

Let’s plot:

A <- ggplot(df, aes(x=expen_wages,y=log_income)) +
  geom_point() +
  labs(title = "0. Relation between wages and income. Beta = 0.13") +
  geom_smooth(method = "lm") +
  xlim(c(-3,7)) + ylim(c(-3,6))
A
## `geom_smooth()` using formula = 'y ~ x'
B <- ggplot(df, aes(x=expen_wages,y=log_income,color = factor(urban))) +
  geom_point() +
  labs(title = "1. Relation between wages and income divided by urban.") +
  xlim(c(-3,7)) + ylim(c(-3,6))
B
C <- ggplot(df, aes(x=expen_wages_residual,y=log_income,color = factor(urban))) +
  geom_point() +
  labs(title = "2. We remove the difference of wages explained by urban.")+
  xlim(c(-3,7)) + ylim(c(-3,6))
C
D <- ggplot(df, aes(x=expen_wages_residual,y=log_income_residual,color = factor(urban))) +
  geom_point() +
  labs(title = "3. We remove the difference of income explained by urban.")+
  xlim(c(-3,7)) + ylim(c(-3,6))
D
E <- ggplot(df, aes(expen_wages_residual,y=log_income_residual)) +
  geom_point() +
  labs(title = "4. We analize what is left. Beta = -0.22") +
  geom_smooth(method = "lm")+
  xlim(c(-3,7)) + ylim(c(-3,6))
E
## `geom_smooth()` using formula = 'y ~ x'
ggarrange(A,B,C,D,E,
          common.legend = T,
          ncol = 2,
          nrow = 3)
## `geom_smooth()` using formula = 'y ~ x'
## `geom_smooth()` using formula = 'y ~ x'
## `geom_smooth()` using formula = 'y ~ x'